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The photodissociation dynamics of water is investigated, using a quantum/classical treatment. Here, the H+
OH dissociation coordinate is treated classically, whereas the dynamics of the remaining OH molecule is
propagated quantum-mechanically. It is found that this approach does not provide an accurate description of
the dynamics of this system, because of the strong coupling between the quantum and classical coordinates
near the transition state. To remedy this situation, a multiple-configuration quantum/classical approach is
investigated in which the quantum wave packet is divided into several contributions, each of which is coupled
to a separate classical trajectory. This approach is found to provide an accurate representation of the total and
partial cross sections for the photodissociation of water on theÃ state, as well as the OH product state
distributions.

I. Introduction

The exact quantum mechanical description of chemical
processes can be accurately and relatively easily implemented
by solving the time-dependent Schro¨dinger equation on a well-
chosen grid of points.1,2 Unfortunately, the delocalized nature
of quantum mechanical wave functions makes these approaches
difficult to implement for systems that contain more than four
atoms or six internal degrees of freedom. Moreover, the
computational demands of these approaches increase dramati-
cally with the energy that needs to be considered, as well as
with the effective masses that are associated with the internal
motions. This is because an increase of either of these quantities
increases the density of the grid points that is required to obtain
accurate results. In contrast, classical treatments scale ap-
proximately linearly with the dimensionality of the system.
Furthermore, in the limits where quantum approaches become
less efficient, at high energies or for heavier atoms, quantum
mechanical effects, such as tunneling and zero-point energy,
tend to become less important. In many systems, particularly
those which include H atoms, some of the dynamical properties
are described well by classical approaches, whereas a small
subset of the degrees of freedom requires a quantum mechanical
treatment.

On the basis of the previously mentioned analysis, an
attractive alternative to purely quantum mechanical or classical
approaches is to propagate a small subset of the degrees
of freedom quantum-mechanically, while the remaining
degrees of freedom are treated classically.3-8 Here, the quantum
and classical subsystems evolve time-dependently and they
are coupled through the time-dependent self-consistent field
(TDSCF) approximation.3

To justify this division of the system into quantum and
classical parts, a minimal degree of separability between the
dynamics of the quantum and classical subsystems must be
assumed. A serious drawback of the simplest quantum/classical
treatments comes from the fact that, if the dynamics of the two

subsystems is not sufficiently separable, the quantum/classical
approximation can lead to an artificial correlation in the
dynamics of the two subsystems.

Similar problems have been reported for the analogous
quantum/quantum TDSCF approximation.9 To minimize the
effects of this overcorrelation in the TDSCF approach, multiple-
configuration extensions have been suggested and successfully
implemented for a variety of problems.9-12 Recently, we have
proposed a similar approach for quantum/classical studies.8,13-15

In this approach, the quantum subsystem is divided into two or
more orthogonal wave functions and separate classical trajec-
tories are propagated for each of the contributions to the
quantum wave packet. This approach can provide an accurate
description of the dynamics, whereas the computational demands
of the simulation are not significantly greater than those for a
single-configuration treatment.

In this paper, we will investigate single- and multiple-
configuration approximations to the photodissociation dynamics
of H2O on theÃ electronic state. We choose this system for
several reasons. First, it is a system that has been investigated
by a variety of computational approaches, including time-
dependent quantum calculations16-18 and classical trajectory
simulations.19,20 As such, it provides an attractive system on
which to benchmark the multiple-configuration quantum/clas-
sical approach. In addition, the photodissociation of water has
been an area of almost-continuous experimental interest for the
past 25 years.21-27 Recently, studies of the photodissociation
of water in clusters have been reported,28-30 thereby presenting
situations in which purely quantum treatments of the dynamics
are no longer feasible. Finally, the symmetry of the photodis-
sociation of water, in which either of the two OH bonds can be
broken with equal probability, makes this system a particularly
challenging one for quantum/classical treatments. In fact, we
find that, in the single-configuration treatment, the overcorre-
lation between the quantum and classical degrees of freedom
can cause trajectories to be trapped in the transition state of the
purely repulsiveÃ-state potential surface. On the other hand,
the fact that the photodissociation of water is prompt and there
are strong correlations between the OH stretching and bending
vibrational motions on theX̃ state and the rotational and
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vibrational distributions of the OH product make this process
well-suited for testing the accuracy of quantum-classical treat-
ments of the dynamics.24,26,31

The remainder of this paper is organized as follows. In the
next section, we develop the quantum/classical treatments that
will be used to describe the dynamics. Calculations of the
absorption spectrum of photodissociation of H2O are presented
in detail in section III. Here, we will compare the results of
various forms of multiple-configuration quantum/classical ap-
proximation to those obtained from numerically exact calcula-
tions. Conclusions are given in section IV.

II. Theoretical Approaches

A. Coordinates and the Hamiltonian. In this study, the
photodissociation dynamics of water is described in terms of
the atom-diatom Jacobi coordinates (R,r,θ). Here,R provides
the distance between one of the H atoms and the center of mass
of the other OH fragment,r provides this OH distance, andθ
is the angle between the vectors associated withR and r. The
vibrational (J ) 0) Hamiltonian in these coordinates is given
by

whereµR andµr are the reduced masses for H-OH and OH,
respectively, andV(R,r,θ) provides the global potential surface
for water. In this study, we use the high-quality ab initio surface
of Partridge and Schwenke32 to describe theX̃ state and the
potential of Engel and co-workers16 is used to describe theÃ
state. Finally, the volume element for integration is given as
sin θ dr dR dθ.

Because we are considering the photodissociation dynamics
of water from a specific vibrational state on theX̃ electronic
state, we must first evaluate the wave functions and energies
using theX̃-state potential surface. After the wave functions
are obtained, we use time-dependent quantum and quantum/
classical approaches to propagate the dynamics on theÃ
electronic state. Here, quantum approaches refer to studies in
which all three coordinates are treated quantum-mechanically.
In the quantum/classical studies, the dynamics inr and θ are
treated quantum-mechanically, whereas the dynamics inR and
its conjugate momentumP are treated classically. As such, the
study proceeds through two steps. In the first part, we evaluate
the wave function for the state that corresponds to the initial
conditions for the photodissociation dynamics; in the second
part, we consider the photodissociation dynamics.

B. Determination of the Initial Conditions. The wave
function will be represented on a grid for the quantum dynamics
simulations; therefore, it is convenient to use a grid-based
approach to evaluate the wave functions on theX̃ state as well.
There are several approaches that can be employed. A common
choice is to employ a relaxation approach, as was described by
Kosloff and co-workers.33 Although this approach is efficient
for the ground and other low-lying vibrational states, it becomes
less attractive if a range of vibrational states is intended to be
investigated. As such, we choose to evaluate the ground-state
wave function in a discrete variable representation (DVR),34,35

in which the wave function is represented on a three-dimensional
grid of points. For the two radial coordinatesr andR, we employ
an evenly spaced grid of points, as described by Colbert and
Miller,36 whereas a DVR that is based on the Legendre
polynomials is used to describe the bending dependence of the
wave function.

Because the vibrations of water are well-described by a local
mode model,37 we evaluate the energies and wave functions
for the X̃ state of water in two steps.38,39 In the first step, we
evaluate the eigenfunctions and eigenvalues of the three one-
dimensional Hamiltonians, obtained by setting the remaining
two coordinates to the values that correspond to the minimum
in the potential:

The full Hamiltonian matrix is then set up in a direct-product
basis of the eigenfunctions of the Hamiltonian operators in eq
2. By only including a subset of the possible direct product
functions, for example, those for which the diagonal matrix
elements are smaller than a cutoff energy, one can obtain
converged energies by diagonalizing relatively small matrices.
Furthermore, because

all the required integrals either involve only one of the three
coordinates or, in the case of the full potential, can be evaluated
numerically using the value of the wave function at each of the
grid points.

Although the previously described approach provides accurate
energies and wave functions for the vibrational states of water,
the resulting wave functions are not in a convenient form if we
wish to employ a separation of the dynamics into the quantum-
mechanical OH rotations and vibrations and the classical H atom
translations. Here, we need to represent the wave function as a
product of two wave functions: one that depends onr andθ,
and one that is a function ofR. These wave functions are
obtained by expanding the eigenfunction ofĤ in eq 3 in a natural
modal basis.40 This basis is designed to maximize the leading
coefficient in the expansion. The natural modal basis functions
are obtained from the eigenfunctions of the Hamiltonian matrix
by first setting up the two density matrices:

The eigenfunctions of these matrixes,{ψ(n)(R)} and{ø(n)(r,θ)},
provide the natural modal basis functions. In the discussion that
follows, we will represent this approximation toΨn(R,r,θ) by
the ψ(R)ø(r,θ) product state that has the largest overlap with
Ψn(R,r,θ). In the case of the ground state of water, we find
that the overlap betweenΨn(R,r,θ) andψ(R)ø(r,θ) is >0.9996,
whereas for the states with four quanta in the OH stretch, it
exceeds 0.9577.

C. Quantum Simulations. To quantify the accuracy of the
quantum/classical treatments, we first perform quantum simula-
tions of the dynamics by solving the relation
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For the purposes of the present study, we will refer to the
results of these simulations as exact, to quantify the accuracy
of the quantum/classical approaches. The same grid repre-
sentation of the wave function is used for these calculations as
was used to evaluate the wave functions on theX̃ state. The
wave function is then propagated using a Chebychev expan-
sion of the propagator in eq 6.2,41 Fast Fourier transforms are
used to transform the radial parts of the wave function be-
tween coordinate- and momentum-space representations,1

whereas a transformation matrix is used to transform the
angular dependence from a DVR to the finite basis representa-
tion.42

D. Mixed Quantum/Classical Treatments.In the quantum/
classical approach, the system is divided into two subsystems:
one is treated quantum-mechanically, whereas the other is treated
classically. For the photodissociation of water, the coordinate
and momentum of one of the H atoms (R andP, respectively)
are propagated classically, whereas the dynamics of the remain-
ing OH molecule, which is described byr, θ, and their conjugate
momenta, is propagated quantum-mechanically.

Although the motions of one of the H atoms can be treated
classically, as Schinke and Heller have shown,19,43 the initial
conditions for these trajectories must reflect the initial quantum
state of the system, if we are to obtain a meaningful description
of the photodissociation dynamics. Following Heller and
Schinke and their co-workers, we map theR dependence of the
initial wave function,ψ(R), onto a phase space distribution using
the Wigner function:43,44

whereW(R,P) provides the relative weights of each trajectory.
In the present work, we select our initial conditions from an
evenly spaced grid of points inR and P and run only those
trajectories for which the magnitude of theW(R,P) exceeds 10-3.
It should be noted that the Wigner function has an uncomfortable
feature: it may have negative values. We find that, by including
trajectories with both positive and negative weights in our
simulation, we obtain partial cross sections that are in good
agreement with the results of the full quantum treatment.

After the initial coordinates, momenta, and weights are
generated, the quantum/classical trajectories are then propagated
by numerically solving the equation6

whereR(t) andP(t) are the values of the classical coordinate
and conjugate momentum at timet.

The accuracy of the mixed quantum/classical method depends
on several factors. The first is the validity of the assumption
that the dynamics of one of the H atoms is weakly coupled to
the dynamics of the remaining OH molecule. In addition,
because the forces on the classical particle result from an average
of the Hamiltonian overø(r,θ,t), the quantum/classical treatment
will be most accurate when this quantum wave packet is
localized in coordinate and momentum space. If the wave packet
bifurcates or spreads, the forces that are felt by the classical
subsystem will reflect a weighted average of the forces in all
regions of configuration space where the wave packet has
nonzero amplitude.3

The previous described conditions will be met in the
asymptotic region of the potential where the OH bond that is
broken is represented byR and the OH bond that is propagated
quantum-mechanically is the one that is not broken. Because
there is equal probability for either of the two OH bonds in
water to be broken, only half of the quantum wave packet will
dissociate alongR. The remainder of the wave packet remains
localized at small values ofR and moves out to larger values
of r with time; this is illustrated in Figure 1. Although the two
pieces of the wave packet remain reasonably localized in coor-
dinate space, the fact that the potential has two equivalent dissoc-
iation channels leads the quantum/classical treatment to provide
a poor description of the photodissociation dynamics of water.

Figure 1. Snapshots of the wave packet for H2O at t ) (a) 0 and (b) 400 au. These plots are superimposed on theÃ-state potential energy surface
for water (dashed lines).16 Here, the contours are spaced by 0.02 hartree with the highest energy contour located at 0.14 hartree.
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To correct the previously mentioned deficiencies in the
quantum/classical approach, we project the quantum wave
packet onto two or more contributions and classical trajectories
are propagated independently for each of these contributions.
Following the multiple-configuration quantum approach, which
was proposed by Hammerich et al.,9 we define a set of
orthogonal projection operators:

where|φni〉 represents a vibrational eigenfunction of an isolated
OH molecule. In the present case, these are constructed from
linear combinations of the projection operators that are generated
from the vibrational eigenfunctions of OH. We define the
projection operators so that

and

whereøn(r,θ,t) represents the part of the wave packet that is
localized in thenth channel. As such, the equations of motion
for the multiple-configuration treatment are45

E. Calculating Cross Sections.The asymptotic rotation-
vibration OH product state distributions are calculated from the
results of the quantum simulation, using46,47

whereæj(θ) represents one of the angular momentum eigenstates
of the OH andφVj(r) represents theVth vibrational wave function
for OH for a given level of rotational excitation. The transla-
tional motion of H+ OH is described by a plane wave with
wave vectorkVj ) [2µR(pω + E0 - εVj)]1/2/p. Here,ω is the
photon frequency andE0 is the initial energy of the water
molecule on theX̃ state. Finally,εVj is the energy associated
with the φVj state.

The partial cross sections for H2O are obtained from the
mixed quantum/classical simulation, using

wherecVj
i (t) ) ∫rmin

rmax dr ∫0
π sin θ dθ φV,j(r)æj(θ)øi(r,θ,t). We use

εji ) ∑VjcVj
i
εVj to represent the average energy of the quantum

wave packet. As such, for a given photon energypω, the wave
vector that corresponds to the energy available to the classical
momentum,Pi(t), is given bykhi ) [2µR(pω + E0 - εji)]1/2/p. A
more detailed description of the origins of the previously
discussed expression is given in the Appendix. Finally, following
Henriksen, Engel, and Schinke,19 we replace theδ-function in
eq 14 with

whereγ ) 0.1 eV.
F. Numerical Issues.The photodissociation dynamics of H2O

is studied using both the time-dependent quantum mechanics
and the multiple-configuration quantum/classical methods. The
potential energy surface of Partridge and Schwenke32 is used
to obtain the wave functions for water on theX̃ state, whereas
the potential surface of Engel et al.16 is used for the studies of
the photodissociation dynamics on theÃ state. Here, the initial
wave packetΦ(R,r,θ,t ) 0) is obtained by multiplying the
appropriate wave function for theX̃ state by a constant dipole
moment.

In the time-dependent wave packet propagations, we use grids
in R andr in the range of 0.5a0 to 15.5a0 with 128 grid points
in each dimension. Thirty DVR points are used inθ. The system
can dissociate along eitherR or r; thus, absorbing potentials
are introduced in each coordinate. The absorbing potentials have
the form48

where

The parameterxI provides the value ofr or R where the
absorbing potential becomes nonzero and∆x provides the range
of the absorbing potential. Here,RI ) rI ) 11a0, and∆R ) ∆r
) 3a0. A time step of 100 au is used. We propagate the wave
packet for 2000-3000 au, which is the time that is required
for most of the wave packet to reach the asymptotic region of
the potential. When part of the wave packet reaches the
asymptotic region of the potential, it is projected onto the
asymptotic states that are used to evaluate the cross section in
eq 13 and further propagations of this part of the wave packet
are performed analytically.48,49By varying the grid size and other
propagation parameters, we are able to determine that the
reported quantum-mechanical results are converged.

For the mixed quantum/classical studies, we use a 128-point
grid in r in the range of 0.5a0 to 15.5a0 and 30 DVR points in
θ. The same absorbing potential is used forr as was used in
the three-dimensional studies. The time step for the quantum/
classical simulations is limited by the time over which the
equations of motion in the quantum and classical degrees of
freedom in eq 12 are effectively decoupled. As such, we use a
0.2 au time step for solving the classical equations of motion
and a 0.2 au time step for the quantum propagation whenR <
4a0. For larger values ofR, a 1.0 au time step is used for the
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quantum propagation and five 0.2 au time steps are taken in
the classical degrees of freedom for each time we advance the
quantum wave packet by 1.0 au. For both regions of the
potential, we use a split operator50 to propagate the quantum
dynamics. The classical time step is required to be very small
for these propagations; therefore, we have used a simple, second-
order differencing scheme to solve the classical equations of
motion.

The cross sections that are reported for the mixed quantum/
classical simulations are based on 2000 trajectories. Here, the
initial conditions for the quantum degrees of freedom are given
by ø(r,θ), whereas the initial conditions in the classical degrees
of freedom are given by the Wigner distribution function in eq
7.

The quantum/classical partial cross sections are calculated
whenR ) 11a0, a distance at which the interaction potential is
<1.0 cm-1. Finally, it should be emphasized that the time-
dependent quantum propagation and the mixed quantum/
classical results are based on the same initial wave function,
Ψn(R,r,θ).

As we mentioned previously, the Wigner distribution function
for excited states is not positive for the all values of the
coordinates and momenta. This is illustrated in Figure 2 for the
ground state of water and the state with four quanta of excitation
in the OH stretch. Despite this observation, when the distribution
is integrated overR or P, the standard probability distributions
in momentum and coordinate space are recovered.51 This feature
of the Wigner distribution can cause difficulties. To assess the
extent of these difficulties, we compare the one-dimensional

cross sections that are obtained from classical simulations using
the Wigner distribution functions in Figure 2 to those obtained
from quantum simulations using the same wave function. These
are plotted in Figure 3. For the ground state, the agreement is
very good. For theV ) 4 state, the agreement is good for
wavelengths>200 nm but deteriorates at shorter wavelengths.
The implications of these deviations on an analysis of partial
cross sections will be investigated in the following section.

III. Results and Discussion

A. Vibrational Ground State. To start, we will consider the
photodissociation cross section for water from its ground
vibrational state in two dimensions, e.g., fixedθ. As such, these
simulations correspond to the wave packets that are plotted in
Figure 1. The resulting cross sections are plotted in Figure 4
for the quantum approximation, as well as three quantum/
classical approximations. In all these plots, the total cross section
is plotted with a solid line, whereas the other lines represent
partial cross sections to specific vibrational states of OH.

When only one configuration is used, we obtain the results
plotted in Figure 4b. For wavelengths below∼180 nm, the
quantum and single-configuration quantum/classical cross sec-
tions are in good agreement, but the quantum/classical cross
sections extend to almost 220 nm, whereas the quantum results
die off at∼190 nm. The cross sections that are obtained from
the one-dimensional simulations (plotted in Figure 3) do not
contain this feature; therefore, the errors are due to the
combination of the quantum and classical treatments. In fact,
the source of this problem is easily seen in the wave packet,

Figure 2. Contour plots of Wigner distribution function for different states with (a) zero and (b) four quanta in the OH stretch. In these plots, solid
lines are used to represent positive contours and dashed lines provide the negative contours.

Figure 3. Comparison of the one-dimensional quantum (dashed line) and classical (solid line) cross sections for the photodissociation one of the
OH bonds in water when there are (a) zero and (b) four quanta of excitation in the OH stretch.
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plotted in Figure 1b. When water is initially in its ground
vibrational state, there is equal probability for either of the OH
bonds to break. As such, although we have set up the simulation
with the assumption that the molecule will break alongR, and
that the OH bond that is represented byr will remain intact,
there is equal probability in the simulations for either of the
OH bonds to break. The trajectories that correspond to the
incorrect OH bond being broken will not be described well by
the quantum/classical approximation that we are using. Fur-
thermore, some of the trajectories remain trapped in the
transition state of the potential, because the effective potential
that is obtained by averaging the full potential overψ(r,t) can
be bound. This second feature reflects the well-known over-
correlation of the quantum and classical dynamics when such a
separation is employed.6,15

Clearly, we need a way to separate the two parts of the wave
packet shown in Figure 1b in our quantum/classical simulations.
As such, in the multiple-configuration approach, one of the
configurations will correspond to this dissociation channel.
States withVOH > 4 contribute little to the total cross section;
therefore, we will define thenth projection operator for a
n-configuration treatment, to be given by

On the basis of this observation, there are two obvious choices
for the multiple-configuration treatment: a two-configuration
treatment, in which

and a six-configuration treatment, in which the first five con-
figurations correspond to projection onto single OH vibrational
states withVOH ) 0-4. The cross sections that result from these
two approaches are ploted in panels c and d of Figure 4.

If we compare panels a and c of Figure 4, we find that the
partial cross sections that are obtained from the quantum
simulation are structured, whereas this structure is washed out
in the two-configuration quantum/classical simulation. In ad-
dition, the partial cross sections that are obtained from the
quantum simulation are shifted to shorter wavelengths as the
OH vibrational energy is increased, whereas the curves have
maxima at the same wavelength in the quantum/classical
treatment. This second feature reflects the fact that the energy
that is available to the classical degrees of freedom is determined
by the conservation of energy and the average energy in the
corresponding quantum degree of freedom.6 This feature is also
manifested in the single-configuration results, plotted in Figure
4b. We can eliminate this problem by running separate classical
trajectories for each vibrational state of OH, as is done in the
six-configuration treatment. As shown in the plot in Figure 4d,
when a six-configuration treatment is used to treat the photo-
dissociation dynamics of water, the shifts in the center of the
partial cross sections are now too large and these distributions
are narrower than the corresponding quantum distributions.

In summary, comparing the two types of multiple-configu-
ration quantum/classical treatments, shown in panels c and d
of Figure 4, they are both in good agreement with the quantum
results. Although each of the multiple-configuration treatments
has features that demonstrate deficiencies in the approximation
that is used, the results are of comparable accuracy. As such,
because a two-configuration treatment requires one-third of the
computational resources of a six-configuration study, we will
focus the remainder of the discussion on this multiple-config-
uration treatment.

Figure 4. Comparison of the cross sections for the two-dimensional photodissociation of water (fixedθ) from the ground vibrational state obtained
from the (a) quantum and (b) one-, (c) two-, and (d) six-configuration quantum/classical treatments. In all cases, the total cross section is plotted
with a solid line, whereas the partial cross sections forν ) 0, 1, 2, 3, and 4 are plotted with long dashed, dotted, dash-dotted, short dashed, and
dot-dot-dashed lines, respectively.
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We have repeated the previously described comparison for
calculations of the photodissociation cross section of water in
three dimensions, including the bend. The overall picture is not
changed, although the structure in the quantum cross sections
is eliminated almost entirely. This leads to an improvement in
the agreement between the quantum and two-configuration
quantum/classical results.

A more stringent test of the quantum/classical approaches
can be made by breaking down the partial cross sections plotted
in Figure 4 into rotationally resolved partial cross sections. These
are plotted for the quantum and two-configuration simulations
in Figure 5. The two wavelengths that are shown in this plot
represent the red and blue tails of the partial cross section for
VOH ) 0. In all cases, we have normalized the distributions so
that the total probability is one. As can be seen by comparing
the white lines, there are quantitative differences between the
rotational distributions at these two wavelengths. The two-
configuration quantum/classical simulation picks these trends
quite well, even though the projection operators that were used
for the quantum/classical simulations do not depend on the
rotational state of OH.

B. Excited Vibrational State. As the results plotted in
Figures 2 and 3 demonstrate, evaluation of the photodissociation
cross sections for vibrationally excited states of water presents
several additional challenges. On the other hand, the photodis-
sociation dynamics of vibrationally excited water in isolation,
or in the presence of other atoms or molecules, is a problem of
experimental interest.24,28,30,31Because we treat the OH bond
that dissociates at a different level of theory than that of the
OH bond that remains intact, we use an unsymmetrized local
mode wave function to approximate the initial state of the
system.52

In a local-mode picture, the vibrational states for water are
described by|ab〉s|c〉. Here,a andb specify the number of quanta
of excitation in each of the two OH bonds, wherea > b by
convention, andc specifies the bending state. The superscript,
s ) + or -, indicates the symmetric and antisymmetric linear
combinations of the degenerate, zero-order|ab〉|c〉 and |ba〉|c〉
vibrational states. The fact that the|40〉+|0〉 and|40〉-|0〉 states
are split by only 3.5 cm-1 on the Partridge and Schwenke
potential32 means that, at this level of vibrational excitation,
the states that are formed by taking the sum and difference of
these eigenstates are only weakly coupled by the Hamiltonian
in eq 1. Therefore, these unsymmetrized|40〉|0〉 and |04〉|0〉
local-mode states should be very nearly eigenstates of eq 1.
The quantum simulations discussed below are based on these
unsymmetrized states. To obtain the initial conditions for the
quantum/classical simulations, we perform a natural modal
analysis for each of these states, as described in section II(B).

In Figure 6, we plot the quantum and quantum/classical cross
sections for the dissociation of water from the|40〉|0〉 state. In
the quantum/classical simulation, we selectively break the OH
bond with zero quanta of excitation. When we analyze the
quantum cross sections, we only evaluate the cross section from
the channel in which the water molecule dissociates alongR.
Comparing the two sets of results, we find that the agreement
is good for wavelengths above∼200 nm, but, for shorter
wavelengths, the quantum results show significant probability
for forming vibrationally excited OH. These differences between
the quantum and quantum/classical cross sections reflect the
overcorrelation of the partial cross sections for the different
vibrational states in the two-configuration quantum/classical
treatment. Despite this condition, when we analyze the rotational
probabilities for three different wavelengths in Figure 7, we find

Figure 5. Partial cross sections obtained from quantum (white bars) and multiple-configuration quantum/classical (black bars) simulations of the
photodissociation of water in its ground state forλ ) (a) 160 and (b) 187 nm.

Figure 6. Comparison of the photodissociation cross sections for water when it is initially in the|04〉|0〉, evaluated using the (a) quantum and (b)
multiple-configuration quantum/classical approaches.
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that the agreement between the quantum and quantum/classical
results is excellent. This is true even at 193 nm, a wavelength
at which the agreement between the total cross sections is
poor.

In Figures 8 and 9, we compare the quantum and quantum/
classical cross sections for the photodissociation of water from
the|40〉|0〉 state. In this case, we selectively break the OH bond
with four quanta of vibrational excitation in the quantum/
classical simulations, whereas in the quantum simulation, we
calculate the cross sections using only the part of the wave
packet that dissociates alongR. As such, the cross sections are
∼4 times as large as the cross sections shown in Figure 6. The
quantum and quantum/classical simulations provide almost-
identical maxima in the cross sections for this state. As in the
one-dimensional classical calculations of the cross section,
plotted in Figure 3b, the quantum and quantum/classical cross
sections are in good agreement for wavelengths>220 nm and
<180 nm; however, the agreement is less good for intermediate
wavelengths. On the basis of the comparisons with the cross
sections in Figure 3b, we believe that most of the differences
reflect difficulties with the classical description of the cross

section from vibrationally excited states, rather than a deteriora-
tion of the quantum/classical treatment for this state.

Finally, in Figure 9, we plot the rotational probability
distributions for two wavelengths. One is chosen to be near the
maximum in the total cross section, whereas the other is near
the value ofλ where the cross section is negative. In both cases,
the rotational distributions calculated using the quantum/classical
and quantum methods are in good agreement. Furthermore, if
we add the cross sections for the two states that correspond to
four quanta in one OH bond and zero in the other, the overall
cross sections are in better agreement than are the separate
distributions, plotted in Figures 6 and 8.

IV. Conclusions

In this paper, we have described an application of the
multiple-configuration quantum/classical approach to a study
of the photodissociation dynamics of water. We have shown
that, although this approach does not exactly reproduce the
quantum cross sections, it provides a good semiquantitative
description of the dynamics. Furthermore, it provides a descrip-
tion of the wavelength dependence of the rotational distributions
that is in excellent agreement with the quantum results. It is
important to note that, because we are using a two-configuration
approach, the computational demands are less than twice the
demands of a single-configuration treatment.

We have also investigated the accuracy of this approach for
studies of the photodissociation from vibrationally excited states
of water. Again, the quantum/classical approach picks many of
the most important trends in the total cross section, as well as
in the rotational distribution for the ground state of OH. For
example, we are able to reproduce the vibrational-state depen-
dence on the position and the height of the maximum in the
total photodissociation cross section. This is something that is
not achieved by the single-configuration treatment, as is shown
in the results plotted in Figure 4. We are also able to obtain
semiquantitative descriptions of the rotational probability dis-
tributions and pick up the dependence of features in these
distributions on the initial vibrational state of the system, as
well as the wavelength at which the distribution is measured.

Clearly, there are more-accurate approaches that can be used
to study three-atom systems such as water.16,24,53-55 The purpose
of the present study has been to investigate the accuracy of a
multiple-configuration quantum/classical treatment of this sys-
tem, to obtain insights to the level of accuracy and the types of
errors we should expect when we use it to study the photodis-
sociation dynamics for systems such as water in weakly bound
complexes, for which full quantum simulations are not practical.
The advantages of the quantum/classical approach for such
systems can be clearly seen when we compare the computational
demands for a single quantum/classical trajectory to those of a
quantum wave packet simulation. Using the parameters given
in section II, we find that the quantum simulation requires 3
times as much memory and 100 times as much computer
processing time as a single quantum/classical trajectory. Clearly,
a large number of quantum/classical trajectories will be required
to obtain the same information as a single quantum wave packet
simulation, and the total simulation times required to obtain the
quantum/classical results shown in Figures 5-9 were twice those
required to obtain the quantum results. The full advantages of
the quantum/classical treatment are realized when larger systems
are to be considered,because, although the memory requirements
alone would make simulations of the photodissociation of water
in an argon-H2O complex prohibitive, the quantum/classical
simulations of this process require 200 MB of memory, which

Figure 7. Partial cross sections for the photodissociation of water in
the |04〉|0〉 state whenλ ) (a) 193, (b) 218, and (c) 240 nm.
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is approximately the same amount of memory required for the
quantum simulation of bare water. Furthermore, because each
trajectory is propagated independently, the quantum/classical
simulations are ideal candidates for being run on parallel
computers.

Acknowledgment. The authors gratefully acknowledge the
National Science Foundation, through Grant No. CHE-0200968,
and the Dreyfus Foundation awards program for partial support
of this work. We also thank Professor Lichang Wang for many
helpful discussions during the course of this study.

Appendix

To evaluate the quantum/classical cross section, we begin
with43

whereFVj,E andF(t) are the density matrices andTr denotes a
quantum mechanical trace.

If

then, in the quantum/classical approximation

and

Here,V andm are used to represent the vibrational state of OH,
whereas j and l provide the angular momentum quantum
number.

Substituting the previously given expressions into eq 20, we
find that

where cVj
i (t) ) ∫rmin

rmax dr ∫0
π sin θ dθ φV,j(r)æj(θ)øi(r,θ,t),

khi ) [2µR(pω + E0 - εji)]1/2/p, εji ) ∑VjcVj
i
εVj, ∑Vj|cVj

i (t)|2 ) 1,
andPi(t) is the final momentum of theith trajectory.

Figure 8. Comparison of the photodissociation cross sections for the|40〉|0〉 state of water, evaluated using the (a) quantum and (b) multiple-
configuration quantum/classical approaches.

Figure 9. Partial cross sections for the photodissociation of water in the|40〉|0〉 state whenλ ) (a) 218 and (b) 266 nm.

FVj,E ) ( µR

2πpkhi)δ(P - pkhi)|Vj〉〈Vj| (23)

σVj
Q/C(ω) ∝ ω lim

tf∞
{Tr[FVj,EF(t)]}

) ω lim
tf∞{∑

V′j′
〈V′j′|FVj,EF(t)|V′j′〉}

) ω lim
tf∞{∑

i)1

ntraj(µR

khi )∑V′j′
∑
ml

∑
m′l′

W(Ri(0), Pi(0))cml
i (t) ×

cm′l′
i/ (t)〈V′j′|Vj〉〈Vj|ml〉〈m′l′|V′j′〉 ×

∫dPdRδ(R-Ri(t))δ(P-Pi(t))δ(P(t)-pkhi)}
) ω lim

tf∞{∑
i ) 1

ntraj(µR

khi )W(Ri(0), Pi(0))δ(Pi(t) - pkhi)|cVj
i (t)|2}

(24)

σVj(ω) ∝ ω|〈ψVj(E)| exp(- iĤt
p )|Φ(0)〉|2 ) ω lim

tf∞
Tr[FVj,EF(t)]

(20)

|ø(r,θ,t) ) ∑
Vj

cVj(t)|Vj〉 (21)

F(t) ) ∑
i)1

ntraj

[W(Ri(0), Pi(0)) δ(R - Ri(t)) ×

δ(P - Pi(t)) ∑
mlm′l′

cml
i (t)cm′l′

i/ (t)|ml〉〈m′l′|] (22)
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