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The photodissociation dynamics of water is investigated, using a quantum/classical treatment. Here, the H
OH dissociation coordinate is treated classically, whereas the dynamics of the remaining OH molecule is
propagated quantum-mechanically. It is found that this approach does not provide an accurate description of
the dynamics of this system, because of the strong coupling between the quantum and classical coordinates
near the transition state. To remedy this situation, a multiple-configuration quantum/classical approach is
investigated in which the quantum wave packet is divided into several contributions, each of which is coupled
to a separate classical trajectory. This approach is found to provide an accurate representation of the total and
partial cross sections for the photodissociation of water onAtrstate, as well as the OH product state
distributions.

I. Introduction subsystems is not sufficiently separable, the quantum/classical
approximation can lead to an artificial correlation in the
ddynamics of the two subsystems.

Similar problems have been reported for the analogous
quantum/quantum TDSCF approximatidi.o minimize the
gffects of this overcorrelation in the TDSCF approach, multiple-
configuration extensions have been suggested and successfully

The exact quantum mechanical description of chemical
processes can be accurately and relatively easily implemente
by solving the time-dependent S¢Himger equation on a well-
chosen grid of points2 Unfortunately, the delocalized nature
of quantum mechanical wave functions makes these approache

difficult to implement for systems that contain more than four implemented for a variety of problerfist2 Recently, we have

atoms or six intemal degrees of freedom. Moreover, the roposed a similar approach for quantum/classical st§dfe®
computational demands of these approaches increase dramati'OP pp d o . :
In this approach, the quantum subsystem is divided into two or

cally with the energy that needs to be considered, as well asm re orthogonal wave functions and rate classical traiec-
with the effective masses that are associated with the internalT'Or€ orthogonal wave functions and separate classical trajec

motions. This is because an increase of either of these quantitieéorfnst z;:e grzpagfﬁig _lf_?qr.se;ChrogC;hfa:OTg'b(;’:%r;saa trhaete
increases the density of the grid points that is required to obtain quantum wave p - [NIs app provi .

accurate results. In contrast, classical treatments scale ap_descnptlon of the dynamics, whereas the computational demands

proximately linearly with the dimensionality of the system. of the simullation' are not significantly greater than those for a
Furthermore, in the limits where quantum approaches become3|ngle-conflguratlon treatment,

less efficient, at high energies or for heavier atoms, quantum [N this paper, we will investigate single- and multiple-
mechanical effects, such as tunneling and zero-point energy,conflguratlon approximations to the photodissociation dynamics

tend to become less important. In many systems, particularly of H20 on theA electronic state. We choose this system for

those which include H atoms, some of the dynamical properties SEVeral reasons. First, it is a system that has been investigated
are described well by classical approaches, whereas a smalPy & variety of compuraulon_%[ﬁgg)proachles, _|n(|:lud|_ng time-
subset of the degrees of freedom requires a quantum mechanicdf€Pendent guantum calculati and classical trajectory

treatment simulations!®2° As such, it provides an attractive system on
On the basis of the previously mentioned analysis, an

which to benchmark the multiple-configuration quantum/clas-
attractive alternative to purely quantum mechanical or classical sical approach. In addition, Fhe photodlss_;omatlon of water has
approaches is to propagate a small subset of the degree?een an area of almost-continuous experimental interest for the
of freedom quantum-mechanically, while the remaining

past 25 year3! 2’ Recently, studies of the photodissociation
degrees of freedom are treated classicaifyHere, the quantum

of water in clusters have been reporf&€d° thereby presenting
and classical subsystems evolve time-dependently and theyS|tuat|ons in which purely qguantum treatments of the dynamics
are coupled through the time-dependent self-consistent field

are no longer feasible. Finally, the symmetry of the photodis-
(TDSCF) approximatiod sociation of water, in which either of the two OH bonds can be
To justify this division of the system into quantum and

broken with equal probability, makes this system a particularly
classical parts, a minimal degree of separability between the

challenging one for quantum/classical treatments. In fact, we
dynamics of the quantum and classical subsystems must b

find that, in the single-configuration treatment, the overcorre-
assumed. A serious drawback of the simplest quantum/classica

ation between the quantum and classical degrees of freedom
treatments comes from the fact that, if the dynamics of the two can cause trajectories to be trapped in the transition state of the

purely repulsiveA-state potential surface. On the other hand,
¥ Part of the special issue “Donald J. Kouri Festschrift”. the fact that the ph.otodlssouatlon of water is pr'ompt and thgre
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vibrational distributions of the OH product make this process  Because the vibrations of water are well-described by a local
well-suited for testing the accuracy of quantum-classical treat- mode modef’ we evaluate the energies and wave functions
ments of the dynamic¥2631 for the X state of water in two ste&:3° In the first step, we
The remainder of this paper is organized as follows. In the evaluate the eigenfunctions and eigenvalues of the three one-
next section, we develop the quantum/classical treatments thatdimensional Hamiltonians, obtained by setting the remaining
will be used to describe the dynamics. Calculations of the two coordinates to the values that correspond to the minimum
absorption spectrum of photodissociation ofHare presented  in the potential:
in detail in section IIl. Here, we will compare the results of

various forms of multiple-configuration quantum/classical ap- A= — h_z 8_2 + V(Rr,6,)
proximation to those obtained from numerically exact calcula- R 2ug| oR? re
tions. Conclusions are given in section 1V. r2\ 52
Il. Theoretical Approaches h = _(Zr)a_rz T V(R.r.0o)
A. Coordinates and the Hamiltonian. In this study, the R 1 1
photodissociation dynamics of water is described in terms of g = ( + —2)]2 + V(R r.,0) 2
the atom-diatom Jacobi coordinate®¢,0). Here,R provides ZMRRi 2u,re

the distance between one of the H atoms and the center of mass o o ) ]
of the other OH fragment; provides this OH distance, arit The full Hamiltonian matrix is then set up in a direct-product

is the angle between the vectors associated Riimdr. The basis of the eigenfunctions of the Hamiltonian operators in eq
vibrational ¢ = 0) Hamiltonian in these coordinates is given 2 BY only including a subset of the possible direct product
by functions, for example, those for which the diagonal matrix

elements are smaller than a cutoff energy, one can obtain
N 2\ 92 K2\ 52 1 1\, converged energies by diagonalizing relatively small matrices.
=15 = 51> +—|i" + V(Rr,0) Furthermore, because
2up)oR? \2ueJor?  \2u R 2ur

1 A PO
@) A=he+h +h,+ le_ ! .
whereur andy; are the reduced masses for-BH and OH, W 2ugRe 2w 2ur]
respectively, and/(R,r,0) provides the global potential surface V(RI,0) — V(RI o0 — V(R.I,0) — V(R.I.0) (3)
1l 1 ey 9l 1! ey

for water. In this study, we use the high-quality ab initio surface
of Partridge and Schwen¥eto describe theX state and the 4| the required integrals either involve only one of the three

potential of Engel and co-workeéfsis used to describe tha coordinates or, in the case of the full potential, can be evaluated
state. Finally, the volume element for integration is given as n,merically using the value of the wave function at each of the
sin 6 dr dR d6. grid points.

Because we are considering the photodissociation dynamics™ although the previously described approach provides accurate
of water from a specific vibrational state on theelectronic  gnergies and wave functions for the vibrational states of water,
state, we must first evaluate the wave functions and energiese resulting wave functions are not in a convenient form if we
using th(_aX-state potent_lal surface. After the wave functions \ish to employ a separation of the dynamics into the quantum-
are obtained, we use time-dependent quantum and quantumf,echanical OH rotations and vibrations and the classical H atom
classical approaches to propagate the dynamics onAthe (angiations. Here, we need to represent the wave function as a
electronic state. Here, quantum approaches refer to studies iMroduct of two wave functions: one that dependsr @nd 6,
which all three coordinates are treated quantum-mechanically. 5nq one that is a function dR. These wave functions are
In the quantum/classical studies, the dynamics and 6 are obtained by expanding the eigenfunctiorfbin eq 3 in a natural
treated quantum-mechanically, whereas the dynamigsand modal basig? This basis is designed to maximize the leading
its conjugate momentur are treated classically. As such, the  coefficient in the expansion. The natural modal basis functions

study proceeds through two steps. In the first part, we evaluate e gptained from the eigenfunctions of the Hamiltonian matrix
the wave function for the state that corresponds to the initial by first setting up the two density matrices:

conditions for the photodissociation dynamics; in the second

part, we consider the photodissociation dynamics. ) _ : *

B. Determination of the Initial Conditions. The wave PR (RR) ffsm@d@ dr Wo(RrO)Wo(Ror.6)  (4)
function will be represented on a grid for the quantum dynamics O or )= [dRY*Rr.OW (Rr'.6 5
simulations; therefore, it is convenient to use a grid-based Pra(t0.r,0) f n(REOTRL0) ©)
approach to evaluate the wave functions onXtetate as well. The eigenfunctions of these matrix¢g;"(R)} and{y"(r,0)},

There are several approaches that can be employed. A commorprovide the natural modal basis functions. In the discussion that
choice is to employ a relaxation approach, as was described byfollows, we will represent this approximation ,(Rr,0) by
Kosloff and co-workerg? Although this approach is efficient  the (R (r,0) product state that has the largest overlap with
for the ground and other low-lying vibrational states, it becomes W, (Rr,0). In the case of the ground state of water, we find
less attractive if a range of vibrational states is intended to be that the overlap betweeH,(Rr,0) andy(R)y(r,0) is >0.9996,

investigated. As such, we choose to evaluate the ground-statgyhereas for the states with four quanta in the OH stretch, it
wave function in a discrete variable representation (D%, exceeds 0.9577.

in which the wave function is represented on a three-dimensional . Quantum Simulations. To quantify the accuracy of the
grid of points. For the two radial coordinateandR, we employ  quantum/classical treatments, we first perform quantum simula-
an evenly spaced grid of points, as described by Colbert andtions of the dynamics by solving the relation

Miller,3¢ whereas a DVR that is based on the Legendre R

polynomials is used to describe the bending dependence of the ORr,0,1) = exp(— iH—t)tb(Rr 0t =0) (6)
wave function. e h e
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Figure 1. Snapshots of the wave packet fos®iatt = (a) 0 and (b) 400 au. These plots are superimposed oA-#tate potential energy surface
for water (dashed linedy.Here, the contours are spaced by 0.02 hartree with the highest energy contour located at 0.14 hartree.

For the purposes of the present study, we will refer to the .
results of these simulations as exact, to quantify the accuracy
of the quantum/classical approaches. The same grid repre-

sentation of the wave function is used for these calculations as
was used to evaluate the wave functions on Xhstate. The
wave function is then propagated using a Chebychev expan-
sion of the propagator in eq%'! Fast Fourier transforms are
used to transform the radial parts of the wave function be-
tween coordinate- and momentum-space representdtions,
whereas a transformation matrix is used to transform the

angular dependence from a DVR to the finite basis representa-

tion#?
D. Mixed Quantum/Classical Treatments.In the quantum/
classical approach, the system is divided into two subsystems:

one is treated quantum-mechanically, whereas the other is treated

classically. For the photodissociation of water, the coordinate
and momentum of one of the H atonR® énd P, respectively)

ay(r.on
at

[k ot

dR(t) _
&

+V(R(t),r,0) (r,6,t)
2ur ZuRR2< }X

P(Y)
Ur
B,(r,e,t)‘g—:‘x(r,e,t)ﬂ

O (r,0,0)|x(r,0,t)0
@( o1t )‘BV(R(t) I 0)

dP(t)
d

~2

J
ueR(t)°
Oy (r,0,t)|x(r,0,H)0

are propagated classically, whereas the dynamics of the remainwhereR(t) and P(t) are the values of the classical coordinate

ing OH molecule, which is described byd, and their conjugate
momenta, is propagated quantum-mechanically.

Although the motions of one of the H atoms can be treated
classically, as Schinke and Heller have shd#A? the initial
conditions for these trajectories must reflect the initial quantum
state of the system, if we are to obtain a meaningful description
of the photodissociation dynamics. Following Heller and
Schinke and their co-workers, we map fReependence of the
initial wave function(R), onto a phase space distribution using
the Wigner functiorf344

ﬁ [ ds w*(R + :;‘)w(R - g) exp(i%p) )

whereW(R,P) provides the relative weights of each trajectory.
In the present work, we select our initial conditions from an
evenly spaced grid of points iR and P and run only those
trajectories for which the magnitude of té¢R,P) exceeds 1.
It should be noted that the Wigner function has an uncomfortable
feature: it may have negative values. We find that, by including
trajectories with both positive and negative weights in our
simulation, we obtain partial cross sections that are in good
agreement with the results of the full quantum treatment.
After the initial coordinates, momenta, and weights are

WRP) =

and conjugate momentum at tine

The accuracy of the mixed quantum/classical method depends
on several factors. The first is the validity of the assumption
that the dynamics of one of the H atoms is weakly coupled to
the dynamics of the remaining OH molecule. In addition,
because the forces on the classical particle result from an average
of the Hamiltonian ovey(r,0,t), the quantum/classical treatment
will be most accurate when this quantum wave packet is
localized in coordinate and momentum space. If the wave packet
bifurcates or spreads, the forces that are felt by the classical
subsystem will reflect a weighted average of the forces in all
regions of configuration space where the wave packet has
nonzero amplitudé.

The previous described conditions will be met in the
asymptotic region of the potential where the OH bond that is
broken is represented Byand the OH bond that is propagated
guantum-mechanically is the one that is not broken. Because
there is equal probability for either of the two OH bonds in
water to be broken, only half of the quantum wave packet will
dissociate alondr. The remainder of the wave packet remains
localized at small values d® and moves out to larger values
of r with time; this is illustrated in Figure 1. Although the two
pieces of the wave packet remain reasonably localized in coor-
dinate space, the fact that the potential has two equivalent dissoc-

generated, the quantum/classical trajectories are then propagateiition channels leads the quantum/classical treatment to provide

by numerically solving the equatién

a poor description of the photodissociation dynamics of water.
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To correct the previously mentioned deficiencies in the whereciyj(t) = [ dr [ sin 0 do ¢,j(r)g;(0)x'(r,0,t). We use
quantum/classical approach, we project the quantum waveg =y ,c.¢, to represent the average energy of the quantum
packet onto two or more contributions and classical trajectories wave packet. As such, for a given photon engigy the wave
are propagated independently for each of these contributions.vector that corresponds to the energy available to the classical
Following the multiple-configuration quantum approach, which  momentumPi(t), is given byki = [2ur(fiw + Eo — €)]Y2h. A
was proposed by Hammerich et flwe define a set of  more detailed description of the origins of the previously
orthogonal projection operators: discussed expression is given in the Appendix. Finally, following

Henriksen, Engel, and Schink&we replace thé-function in

K= Z|¢nim2bni| 9) eq 14 with

1 z
where|¢, [represents a vibrational eigenfunction of an isolated 0(2 = (—2) eXF{_(—ﬂ (15)
OH molecule. In the present case, these are constructed from Ny Y

linear combinations of the projection operators that are generated

from the vibrational eigenfunctions of OH. We define the Wherey =0.1eV. o _
projection operators so that F. Numerical Issues The photodissociation dynamics 0@l

is studied using both the time-dependent quantum mechanics
z(/::] =1 (10) and the multiple-configuration quantum/classical methods. The
= potential energy surface of Partridge and Schwéhigeused
to obtain the wave functions for water on tKestate, whereas
and the potential surface of Engel et’8lis used for the studies of
) the photodissociation dynamics on tAestate. Here, the initial
xnlr,0.0) = L (r,0,) (11)  wave packet®(Rr,0,t = 0) is obtained by multiplying the
~ appropriate wave function for thé state by a constant dipole
where n(r,0,t) represents the part of the wave packet that is oment.

localized in thenth channel. As such, the equations of motion | the time-dependent wave packet propagations, we use grids

for the multiple-configuration treatment &e in Randr in the range of 0.& to 15.5 with 128 grid points
0 o\ o in each dimension. Thirty DVR points are usedinThe system
ihwz _(h_)8_+ 1 + 1 2+ can dissociate along eith& or r; thus, absorbing potentials
ot 2ucfor®  |2ur®  2uRe(1) are introduced in each coordinate. The absorbing potentials have
the fornfé
V(R(®),r,0)p x(r.0.1)
* fx)=0 X <x
drR(t) P(t
dE)Z# =10/ — 15"+ 6y° (X <X <X + AX)
R
=1 + Ax < 16
MV(RQ),1,0) 2 ( +Ax <x) (16)
(00—~ L lu(r.00
daP(t) _ UrR(t) where
d G110, 2o(r 0,00 -
n n (12) y= X=X (17)
AX

E. Calculating Cross SectionsThe asymptotic rotation
vibration OH product state distributions are calculated from the The parameteix provides the value of or R where the
results of the quantum simulation, usthg’ absorbing potential becomes nonzero Axgrovides the range
of the absorbing potential. Herg, = r; = 11a;, andAR = Ar
o Fmax T = 3ap. A time step of 100 au is used. We propagate the wave
R r in S ; : .
L/;J d L/;m. d ﬂ) sin6 dé x packet for 2006-3000 au, which is the time that is required

Ur ).
o,i(w) 0 w(Zﬂhkﬁj)!I—To
. 2 for most of the wave packet to reach the asymptotic region of
exp(-ik,;R)¢,(Ne; () P(Rr.0.9| (13) the potential. When part of the wave packet reaches the
) asymptotic region of the potential, it is projected onto the
whereg;(6) represents one of the angular momentum eigenstates,symptotic states that are used to evaluate the cross section in
of the OH andp,(r) represents theth vibrational wave function a4 13 and further propagations of this part of the wave packet
for OH for a given level of rotational excitation. The transla-  re performed analytical§f49By varying the grid size and other

tional motion of H+ OH is described by a plane wave with  ropagation parameters, we are able to determine that the

wave vectorkj = [2ur(hw + Eo — €,)]"%/h. Here,w is the reported quantum-mechanical results are converged.

photon frequency and, is the initial energy of the water For the mixed quantum/classical studies, we use a 128-point

m.olecule on theX state. Finally.e,; is the energy associated grid in r in the range of 0.8 to 15.5 and 30 DVR points in

with the ¢, state. _ _ 6. The same absorbing potential is used faas was used in
The partial cross sections for,8 are obtained from the e three-dimensional studies. The time step for the quantum/

mixed quantum/classical simulation, using classical simulations is limited by the time over which the
oc equations of motion in the quantum and classical degrees of

0y (w) O freedom in eq 12 are effectively decoupled. As such, we use a

0.2 au time step for solving the classical equations of motion
2 (14) and a 0.2 au time step for the quantum propagation viten
4ap. For larger values oR, a 1.0 au time step is used for the

ntraj
w Iim[ ZJ(@)W(Q(O), P'(0)) 0(P'(t) — AK)|c};(t)

t—o0 I
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Figure 2. Contour plots of Wigner distribution function for different states with (a) zero and (b) four quanta in the OH stretch. In these plots, solid
lines are used to represent positive contours and dashed lines provide the negative contours.
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Figure 3. Comparison of the one-dimensional quantum (dashed line) and classical (solid line) cross sections for the photodissociation one of the
OH bonds in water when there are (a) zero and (b) four quanta of excitation in the OH stretch.

guantum propagation and five 0.2 au time steps are taken incross sections that are obtained from classical simulations using
the classical degrees of freedom for each time we advance thethe Wigner distribution functions in Figure 2 to those obtained
quantum wave packet by 1.0 au. For both regions of the from quantum simulations using the same wave function. These
potential, we use a split operatbrto propagate the quantum are plotted in Figure 3. For the ground state, the agreement is
dynamics. The classical time step is required to be very small very good. For thev = 4 state, the agreement is good for
for these propagations; therefore, we have used a simple, secondwavelengths>200 nm but deteriorates at shorter wavelengths.
order differencing scheme to solve the classical equations of The implications of these deviations on an analysis of partial
motion. cross sections will be investigated in the following section.

The cross sections that are reported for the mixed quantum/
classical simulations are based on 2000 trajectories. Here, thell- Results and Discussion
initial conditions for the quantum degrees of freedom are given A vjiprational Ground State. To start, we will consider the
by »(r,0), whereas the initial conditions in the classical degrees phoodissociation cross section for water from its ground
of freedom are given by the Wigner distribution function in eq vibrational state in two dimensions, e.g., fix@dAs such, these
7. simulations correspond to the wave packets that are plotted in
The quantum/classical partial cross sections are calculatedrigure 1. The resulting cross sections are plotted in Figure 4
whenR = 11a,, a distance at which the interaction potential is for the quantum approximation, as well as three quantum/
<1.0 cnt™. Finally, it should be emphasized that the time- classical approximations. In all these plots, the total cross section
dependent quantum propagation and the mixed quantum/js plotted with a solid line, whereas the other lines represent
classical results are based on the same initial wave funCtiOI’l,partial cross sections to specific vibrational states of OH.
Wr(Ryr,0). When only one configuration is used, we obtain the results
As we mentioned previously, the Wigner distribution function plotted in Figure 4b. For wavelengths belowl80 nm, the
for excited states is not positive for the all values of the quantum and single-configuration quantum/classical cross sec-
coordinates and momenta. This is illustrated in Figure 2 for the tions are in good agreement, but the quantum/classical cross
ground state of water and the state with four quanta of excitation sections extend to almost 220 nm, whereas the quantum results
in the OH stretch. Despite this observation, when the distribution die off at~190 nm. The cross sections that are obtained from
is integrated oveR or P, the standard probability distributions  the one-dimensional simulations (plotted in Figure 3) do not
in momentum and coordinate space are recovérétis feature contain this feature; therefore, the errors are due to the
of the Wigner distribution can cause difficulties. To assess the combination of the quantum and classical treatments. In fact,
extent of these difficulties, we compare the one-dimensional the source of this problem is easily seen in the wave packet,
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Figure 4. Comparison of the cross sections for the two-dimensional photodissociation of waterfiftech the ground vibrational state obtained

from the (a) quantum and (b) one-, (c) two-, and (d) six-configuration quantum/classical treatments. In all cases, the total cross section is plotted
with a solid line, whereas the partial cross sectionsifer 0, 1, 2, 3, and 4 are plotted with long dashed, dotted, ddskted, short dashed, and
dot-dot-dashed lines, respectively.

plotted in Figure 1b. When water is initially in its ground and a six-configuration treatment, in which the first five con-
vibrational state, there is equal probability for either of the OH figurations correspond to projection onto single OH vibrational
bonds to break. As such, although we have set up the simulationstates wittvony = 0—4. The cross sections that result from these
with the assumption that the molecule will break alddgand two approaches are ploted in panels ¢ and d of Figure 4.

that the OH bond that is represented will remain intact, If we compare panels a and c of Figure 4, we find that the
there is equal probability in the simulations for either of the partial cross sections that are obtained from the quantum
OH bonds to break. The trajectories that correspond to the simulation are structured, whereas this structure is washed out
incorrect OH bond being broken will not be described well by in the two-configuration quantum/classical simulation. In ad-
the quantum/classical approximation that we are using. Fur- dition, the partial cross sections that are obtained from the
thermore, some of the trajectories remain trapped in the quantum simulation are shifted to shorter wavelengths as the
transition state of the potential, because the effective potential OH vibrational energy is increased, whereas the curves have
that is obtained by averaging the full potential oydr,t) can maxima at the same wavelength in the quantum/classical
be bound. This second feature reflects the well-known over- treatment. This second feature reflects the fact that the energy
correlation of the quantum and classical dynamics when such athat is available to the classical degrees of freedom is determined
separation is employ€edt® by the conservation of energy and the average energy in the

Clearly, we need a way to separate the two parts of the wave corresponding quantum degree of freedoftis feature is also
packet shown in Figure 1b in our quantum/classical simulations. manifested in the single-configuration results, plotted in Figure
As such, in the mu|tip|e_conﬁguration approach’ one of the 4b. We can eliminate this problem by running separate classical
configurations will correspond to this dissociation channel. trajectories for each vibrational state of OH, as is done in the
States withwon > 4 contribute little to the total cross section;  Six-configuration treatment. As shown in the plot in Figure 4d,
therefore, we will define thenth projection Operator for a when a SiX'ConﬁgUration treatment is used to treat the phOtO-
n-configuration treatment, to be given by dissociation dynamics of water, the shifts in the center of the

partial cross sections are now too large and these distributions
® are narrower than the corresponding quantum distributions.
A=Y ¢ (18) In summary, comparing the two types of multiple-configu-
& ration quantum/classical treatments, shown in panels ¢ and d
of Figure 4, they are both in good agreement with the quantum
On the basis of this observation, there are two obvious choicesresults. Although each of the multiple-configuration treatments
for the multiple-configuration treatment: a two-configuration has features that demonstrate deficiencies in the approximation

treatment, in which that is used, the results are of comparable accuracy. As such,
because a two-configuration treatment requires one-third of the

4 computational resources of a six-configuration study, we will

L= o] (19) focus the remainder of the discussion on this multiple-config-

= uration treatment.
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Figure 5. Partial cross sections obtained from quantum (white bars) and multiple-configuration quantum/classical (black bars) simulations of the
photodissociation of water in its ground state for= (a) 160 and (b) 187 nm.
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Figure 6. Comparison of the photodissociation cross sections for water when it is initially 0460 evaluated using the (a) quantum and (b)
multiple-configuration quantum/classical approaches.

We have repeated the previously described comparison for In a local-mode picture, the vibrational states for water are
calculations of the photodissociation cross section of water in described byab cllHere,a andb specify the number of quanta
three dimensions, including the bend. The overall picture is not of excitation in each of the two OH bonds, wheaxe> b by
changed, although the structure in the quantum cross sectiongonvention, ana specifies the bending state. The superscript,
is eliminated almost entirely. This leads to an improvement in s= + or —, indicates the symmetric and antisymmetric linear
the agreement between the quantum and two-configurationcombinations of the degenerate, zero-or@dxTcCland |balcl]
quantum/classical results. vibrational states. The fact that ti#0F|0Cand |40 |0Cstates

A more stringent test of the quantum/classical approachesare split by only 3.5 cm' on the Partridge and Schwenke
can be made by breaking down the partial cross sections p|otte(potentia1’2 means that, at this level of vibrational excitation,
in Figure 4 into rotationally resolved partial cross sections. These the states that are formed by taking the sum and difference of
are plotted for the quantum and two-configuration simulations these eigenstates are only weakly coupled by the Hamiltonian
in Figure 5. The two wavelengths that are shown in this plot in eq 1. Therefore, these unsymmetrizg@J0Oand |04000]
represent the red and blue tails of the partial cross section forlocal-mode states should be very nearly eigenstates of eq 1.
von = 0. In all cases, we have normalized the distributions so The quantum simulations discussed below are based on these
that the total probability is one. As can be seen by comparing unsymmetrized states. To obtain the initial conditions for the
the white lines, there are quantitative differences between thequantum/classical simulations, we perform a natural modal
rotational distributions at these two wavelengths. The two- analysis for each of these states, as described in section 1I(B).
configuration quantum/classical simulation picks these trends In Figure 6, we plot the quantum and quantum/classical cross
quite well, even though the projection operators that were usedsections for the dissociation of water from tE@IJ00state. In
for the quantum/classical simulations do not depend on the the quantum/classical simulation, we selectively break the OH
rotational state of OH. bond with zero quanta of excitation. When we analyze the

B. Excited Vibrational State. As the results plotted in  quantum cross sections, we only evaluate the cross section from
Figures 2 and 3 demonstrate, evaluation of the photodissociationthe channel in which the water molecule dissociates alRng
cross sections for vibrationally excited states of water presentsComparing the two sets of results, we find that the agreement
several additional challenges. On the other hand, the photodis-is good for wavelengths above200 nm, but, for shorter
sociation dynamics of vibrationally excited water in isolation, wavelengths, the quantum results show significant probability
or in the presence of other atoms or molecules, is a problem of for forming vibrationally excited OH. These differences between
experimental interegt:28.30.31Because we treat the OH bond the quantum and quantum/classical cross sections reflect the
that dissociates at a different level of theory than that of the overcorrelation of the partial cross sections for the different
OH bond that remains intact, we use an unsymmetrized local vibrational states in the two-configuration quantum/classical
mode wave function to approximate the initial state of the treatment. Despite this condition, when we analyze the rotational
systemP? probabilities for three different wavelengths in Figure 7, we find
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05 . : . : : section from vibrationally excited states, rather than a deteriora-
@ tion of the quantum/classical treatment for this state.
E‘ 0.4 - Finally, in Figure 9, we plot the rotational probability
= distributions for two wavelengths. One is chosen to be near the
’§ 0.3 maximum in the total cross section, whereas the other is near
2« the value ofl where the cross section is negative. In both cases,
= 0.2 the rotational distributions calculated using the quantum/classical
.g ol and gquantum methods are in good agreement. Furthermore, if
< we add the cross sections for the two states that correspond to
0.0 four quanta in one OH bond and zero in the other, the overall
’ cross sections are in better agreement than are the separate
distributions, plotted in Figures 6 and 8.
J
05 : : : : : IV. Conclusions
z2 o4 ®) | In_ this paper, we have describeq an application of the
ZE “r multiple-configuration quantum/classical approach to a study
g 03 | of the photodissociation dynamics of water. We have shown
g : that, although this approach does not exactly reproduce the
g 02 i guantum cross sections, it provides a good semiquantitative
= description of the dynamics. Furthermore, it provides a descrip-
S 0l i tion of the wavelength dependence of the rotational distributions
R that is in excellent agreement with the quantum results. It is
0.0 important to note that, because we are using a two-configuration
0 2 4 6 8 10 approach, the computational demands are less than twice the
. demands of a single-configuration treatment.
J We have also investigated the accuracy of this approach for
0.5 T T T T T studies of the photodissociation from vibrationally excited states
> (©) of water. Again, the quantum/classical approach picks many of
= 04n 7 the most important trends in the total cross section, as well as
§ 03 ) in the rotational distribution for the ground state of OH. For
° example, we are able to reproduce the vibrational-state depen-
? 02 i dence on the position and the height of the maximum in the
% ’ total photodissociation cross section. This is something that is
S 01 4 not achieved by the single-configuration treatment, as is shown
e |H I in the results plotted in Figure 4. We are also able to obtain
0.0 al H al u ol 1 semiquantitative descriptions of the rotational probability dis-
0 2 4 6 8 10 tributions and pick up the dependence of features in these
. distributions on the initial vibrational state of the system, as
J well as the wavelength at which the distribution is measured.

Fi i . . - . Clearly, there are more-accurate approaches that can be used
igure 7. Partial cross sections for the photodissociation of water in t ) 5355
the |0470 state wher?. = (a) 193, (b) 218, and (c) 240 nm. o study three-atom systems such as V\Aﬁé‘f The purpose

of the present study has been to investigate the accuracy of a

multiple-configuration quantum/classical treatment of this sys-
that the agreement between the quantum and quantum/classicakm, to obtain insights to the level of accuracy and the types of
results is excellent. This is true even at 193 nm, a wavelength errors we should expect when we use it to study the photodis-
at which the agreement between the total cross sections issociation dynamics for systems such as water in weakly bound
poor. complexes, for which full guantum simulations are not practical.

In Figures 8 and 9, we compare the quantum and quantum/The advantages of the quantum/classical approach for such

classical cross sections for the photodissociation of water from systems can be clearly seen when we compare the computational
the|4000Cktate. In this case, we selectively break the OH bond demands for a single quantum/classical trajectory to those of a
with four quanta of vibrational excitation in the quantum/ quantum wave packet simulation. Using the parameters given
classical simulations, whereas in the quantum simulation, we in section II, we find that the quantum simulation requires 3
calculate the cross sections using only the part of the wavetimes as much memory and 100 times as much computer
packet that dissociates aloRyAs such, the cross sections are processing time as a single quantum/classical trajectory. Clearly,
~4 times as large as the cross sections shown in Figure 6. Thea large number of quantum/classical trajectories will be required
quantum and quantum/classical simulations provide almost- to obtain the same information as a single quantum wave packet
identical maxima in the cross sections for this state. As in the simulation, and the total simulation times required to obtain the
one-dimensional classical calculations of the cross section, quantum/classical results shown in Figure®5wvere twice those
plotted in Figure 3b, the quantum and quantum/classical crossrequired to obtain the quantum results. The full advantages of
sections are in good agreement for wavelengtB20 nm and the quantum/classical treatment are realized when larger systems
<180 nm; however, the agreement is less good for intermediateare to be considered,because, although the memory requirements
wavelengths. On the basis of the comparisons with the crossalone would make simulations of the photodissociation of water
sections in Figure 3b, we believe that most of the differences in an argon-H,O complex prohibitive, the quantum/classical
reflect difficulties with the classical description of the cross simulations of this process require 200 MB of memory, which
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Figure 8. Comparison of the photodissociation cross sections forl4bg00state of water, evaluated using the (a) quantum and (b) multiple-
configuration quantum/classical approaches.
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Figure 9. Partial cross sections for the photodissociation of water in4bg0Cstate whenl = (a) 218 and (b) 266 nm.

is approximately the same amount of memory required for the and
guantum simulation of bare water. Furthermore, because each

trajectory is propagated independently, the quantum/classical u

. ) ; . . R o

simulations are ideal candidates for being run on parallel Pie= _|5(P — AK)|vj j | (23)
computers. 27hK

Acknowledgment. The authors gratefully acknowledge the o
National Science Foundation, through Grant No. CHE-0200968, Here,» andmare used to represent the vibrational state of OH,
and the Dreyfus Foundation awards program for partial support Whereasj and | provide the angular momentum quantum
of this work. We also thank Professor Lichang Wang for many number.

helpful discussions during the course of this study. ; iugstituting the previously given expressions into eq 20, we
ind that
Appendix
To evaluate the quantum/classical cross section, we begingSY(w) O o lim{ Trp,; ep(t)]}
with#3 e '
- | =otim{ S ¥, e0007]
0,@) 0 | 12,8 exs{~ B (@] = lim Trlp, (0] hp2
(20) ntraj Ug ) ' )

=w lim Z — ZZ;W(R(O), P'(0))cmi(t) x
wherep,;e and p(t) are the density matrices arfat denotes a ol & \K [T &
qul?ntum mechanical trace. o (O '] 0 mITE |/ O

— j — I — I
(0.0 = chj(t)lij 21) fdP dRS(R—R(1)8(P—P'(1))5(P(t) —kk)
Y ntraj {0

_ : - i i i B i, 2

then, in the quantum/classical approximation - !Tl[ iZ(—ki)W(R(O)’ PO)OF() = hk) |c,(0) }
ntraj (24)

o(t) = Z[W(Fé(ox P(0) SR — R(D) x
= where c(t) = /™ dr /3 sin 6 dO ¢,)(N@i(O) (r.0.0),

0P —P(V) 5 el OImITr| (22) K = [us(hor + Eo — @)V, @ = TGy, Sulc,(OP = 1,
mim’ andP'(t) is the final momentum of théh trajectory.
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